

Determination of LOD and cycle cut-off in real-time PCR detecting culturable and non-culturable target organisms

tanja.dreo@nib.si

EPPO Workhop on Setting Ct cut-off values for real-time PCR 11th – 12th November 2013

Analytical sensitivity in bacteriology

EPPO PM 7/98, spiked samples: negative samples + target HO

Minimum 3 different samples bacterial suspension

10⁶ cfu/mL

PM 7 /76 (2) Smallest amount of target that can be detected reliably (this is sometimes referred to as 'limit of detection')

DNA extraction

1 cfu/mL

concentration expected to be negative

real-time PCR

From curves to a numerical LOD value

Amplification Plot

Low level detection

Stochastic effect

- Poisson probability distribution
- In practice, 10 copies of target DNA per PCR vessel is the lowest concentration which is amplified each time a PCR assay is performed (Vaermann et al., 2004).

Cq values at low level detection

 Monte Carlo effect - larger variations in quantified amount / Cq values: "an inherent limitation of PCR amplification from small amounts of any complex template due to <u>differences in amplification efficiency between</u> <u>individual templates</u>"

What is reliable?

In-house definition: "LOD = target copy concentration with probability of detection P(det) 0.9*, **"

number of positive reactions

number of all reactions

*0.95 required by Codex Allimentarius

- ** in a sample population behaving in the same way we expect to miss 10 %
- (Also influenced by target copy number, volume of sample processed, E (DNA extraction),...)

Limited dilutions assay

Nonlinear modelling: data transformation

R statistical (http://www.r-project.org/), drc package (Ritz & Streibig, 2005)

- LOD of the method (and not practical / sample LOD)
- Cq(LOD) is not cycle cut-off; practically it is determined from a series of PCI_{e, LOD}

AmsC assay for *Erwinia amylovora*: influence of DNA extraction

log concentration

Having numerical values at the same P(det) helps us choose the best assay for the purpose.

Pirc et al., 2012. In: DNA Binding and DNA Extraction: Methods, Applications and Limitations.

Approach in phytoplasma diagnostics

		30,33900					
		38,13234					
	560/10 10^3	36,74732					
		36,320198					
		37,39178					
		38,378628					
		37,255714					
5	60/10 3x10^3	36,967052					
		Undetermined					
		37.274067					
		37,40168					
		37,368053					
5	60/10 9x10^3	37,23105					
		Undetermined					
		37,27828					
	560/10 2 7x10^4	Undetermined					
		Undetermined					
		Undetermined					
	2.7/10	38,28518					
		Undetermined					
	560/10 8.1x10^4	Undetermined					
		Undetermined					
		Undetermined					
		Undetermined					
		Undetermined					
		Undetermined					
	560/10 24.3x10^4	Undetermined					
		Undetermined					
		Undetermined					

29,386944 29,369022

29,343899 29,347807

29,274107

560/10 10x

- analyze serial dilutions, 5 replicates
- search for the last group of samples in which there is no amplification in some of the replicates
- take the range of the highest Cq values observed
- round this Cq value up to the next half value
- add 0.5 to this Cq value (to take into account the difference in threshold chosen between runs)

 \rightarrow 38.5 \longrightarrow Cut-off value:

BNgen: 39.0 UniRNA: 37.5 FDgen: 38.5 Always used and interpreted in combination

Cycle cut-off value

Cq above which signals are considered negative

Area in which we cannot be certain that a signal is a consequence of a target DNA amplification (considered false positive)

» Everything above arbitrary Cq

» Cq(LOD/LOQ) + 1 Cq

GMO and food (allergen) analysis

LOD (method) -> LOD (sample)

- Differences in amplification efficiencies, efficiency of DNA extraction etc. between the sample and material used in standard curves
- High standardization of sample preparation (necrotic tissues, different varieties, different physiological ages)
- Bustin & Nolan:
 - Cq (10 copy) = 43.3-43.9 (Xamp ~ 10E3 = 37)

- Cq (1 copy) = 43.3-48.8 (Xamp < 10E3 = 37-43)

- No background signals
- Unspecific amplification?

Zero tolerance pathogens

- proof of absence (testing all, not practical/possible)
- Certain reliability of detection
- Low prevalence
- Aim: to detect as low concentrations of the target pathogen as possible / acceptable risk

Technical justification for Cq cut-off in pathogen detection?

Our experience:

- Signals with high Cq values very rare, usually issues with DNA extraction/sample preparation
- Confirmation by qPCR with other targets
- Reported as suspicious in the absence of pure culture

Confirmation of LOD level results: other targets

sam	sample		Sample 1				Sample 2			
enrichment	dilution	AmsC (1)	AmsC (2)	pEA29	ITS	AmsC (1)	AmsC (2)	pEA29	ITS	
	undiluted	neg	neg	neg	neg	neg	neg	neg	neg	
		neg	neg	neg	neg	neg	neg	neg	neg	
King's B		neg	neg	neg	neg	neg	neg	neg	neg	
medium	1:10 dilution	neg	neg	neg	neg	neg	neg	neg	neg	
		neg	neg	neg	neg	neg	neg	neg	neg	
		neg	neg	neg	neg	neg	neg	neg	neg	
	undiluted	neg	neg	36.24	38.48	35.50	36.11	35.65	34.75	
		37.18	neg	36.15	36.84	34.08	36.18	36.36	34.63	
ССТ		neg	neg	36.81	36.97	34.81	35.41	34.34	34.17	
medium	1:10 dilution	neg	neg	neg	neg	37.38	35.62	35.40	35.57	
		neg	neg	neg	neg	36.19	neg	37.39	35.85	
		neg	neg	37.54	38.39	35.83	neg	35.50	36.78	

Dreo et al. Trees (Berl. West) 2012, 26(1): 165-178

Cq cut-off valuable

How to determine it? What are the criteria?

Biological and epidemiological significance of low concentrations is known

- Qualitative pathogens
- Zero tolerance pathogens with certain treshold needed to cause disease (e.g. 5 x 10E³ for potato pathogens)

Other possible criteria: can be confirmed by other methods, risk,...

- Cq cut-off is an in-house characteristic: value linked to cycler, analysis, sample preparation and laboratory – defining a common target concentration (organisms/copies) is viable
 - Can we agree on the approach how to determine it?
- Cq cut-off is adopted the number of samples above this Cq should be followed to detect an inscrease in their incidence
- Good assay design and absence of contamination is a pre-requirement

Current status

- Reporting on the method LOD with asociated P(det) + relevant experimental data (MIQE guidelines)
- Calibrating laboratories: use of reference material quantified by dPCR

Thanks to all colleagues

Thank you for your attention