

Grapevine trunk diseases: foliar and wood symptoms

Pascal Lecomte

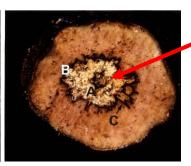
UMR Santé et AgroEcologie du Vignoble (INRA-BSA)
ISVV, Université Bordeaux, France

1 – Eutypa dieback

2 – Botryosphaeria dieback

NO typical leaf symptoms

3 - Esca disease



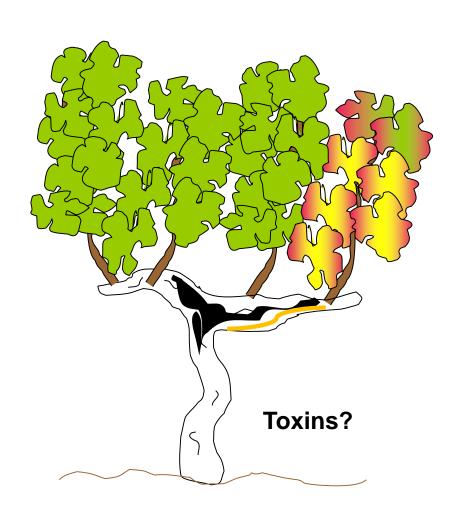
Esca = inner necrosis variable in shape and discoloration Central necrosis

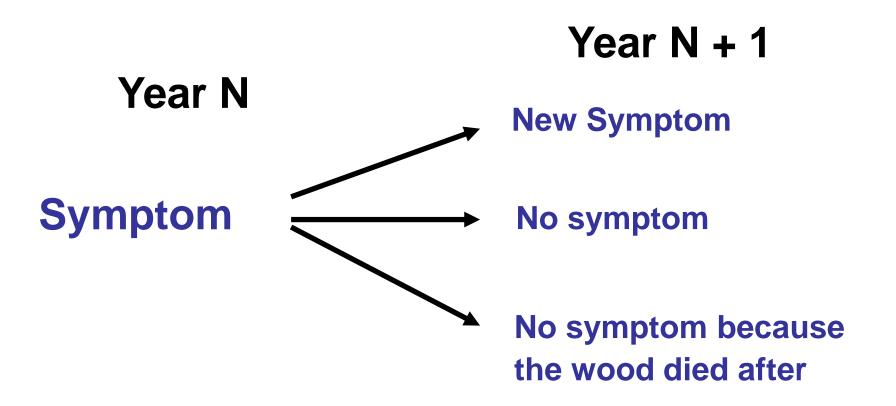
White rot

Sector-shape necrosis

Larignon, 2004

Mixed necrosis → Foliar symptoms (Maher et al., 2012)




Foliar symptoms are often erratic, they usually precede a wood damage (spur, cordon, trunk)

Water transport disruption?

What happens with a vine showing leaf symptoms?

According to the year and according to the development of wood damage, the number of vines which are able to show symptoms cannot be the same

From our (CEB group) experience:

Leaf symptoms are a good indicator of the presence of the disease

but not an accurate indicator of impact

We consider that all symptoms must be recorded

Example of damage caused by esca in Bordeaux area

Vineyard	Cultivar P.G. Date de plantation Conduite	Year	Nb of vines examined		f esca ed vines Leaves
Cénac Entre-2-Mers	Cabernet Franc 3309C 1988 Guyot, short cordons	2004 2005 2006	500 500 550	31.4 38.8 48.2	18.6 16.8 25.6
Latresne, Entre-2-Mers	Cabernet Franc/ Fercal 1987 Lyre, long cordons	2004 2005 2006	1072 500 500	9.4 9.6	45.4 35 55.6

Training systems with long arms decline less rapidly that those with short arms but may exhibit more leaf symptoms and longer

Plant Disease, 2012, 96 (7):924-934; AFFP Tours 2012

Recording Esca symptoms

METHOD:

Rationale = to monitor all wood and leaf symptoms (method CEB 261) in order to get an history of each vine that is individually observed year after year

all ratings are done by comparison with the original vines

4 replicates are used

50 vines per replicate, when the treatment is applied on vines showing symptoms waiting for a leaf symptom resilience in the treated)

100 vines per replicate in other situations

waiting for a difference between treated and control (wood or leaf symptoms)

Ranking index to assess the esca impact

	General canopy status on the year Y	Possible development in Y+1		
Code	Meaning	Code		
V	Original vine without any visible damage (leaves and wood)	V, S, APO, DA, R, M, A, CP		
S	Original vine showing foliar symptoms (whatever their severity) (\$1,2,3,4,5)	V, S, APO, DA, R, M, A, CP		
APO	Original vine showing a widespread or complete wilting due to esca (apoplexy)	APO, DA, R, M, A, CP		
DA	Original vine showing a part of dead wood	DA, R, M, A, CP		
R	Re-trained or re-newed vine	R, M, A, CP		
M	Dead vine	M, A, CP		
Α	Absent vine	A, CP		
СР	Replanted or re-grafted vine, young vine, all vine planted after the initial planting date	CP, M, A		

Some examples of field data History of some vines

Date	2013	2014	2015	2016	2017	2018
Vine 1	0	S2	0	0	0	0
Vine 2	0	S2	0	S1	DA	U S3
Vine 3	S 3	APO1	DA	DA	DA	DA
Vine 4	S 3	S4	DA	DA	DA + APO1	М
Vine 5	DA	DA	DA	DA S1	BM APO1	Α
Vine 6	0	S 1	Weak	DA, S4	M	СР

REFERENCES: P. Lecomte, J. Grosman, 2016, Méthode CEB 261, Méthode d'essai d'efficacité pratique de préparations phytopharmaceutiques destinées à la lutte contre les maladies du bois de la vigne.