Global Herbicide Resistance Action Committee

Global HRAC Member Companies.

Our Members: Arysta LifeScience BASF Bayer CropScience Corteva Agriscience™, Agriculture Division of DowDuPont FMC Syngenta Crop Protection Sumitomo Chemical Company

Our Staff:

Chair *Mark Peterson - Corteva*

Secretary/Treasurer *Roland Beffa – Bayer*

Communications Lead Julia Fellmann, Syngenta

Working Groups:

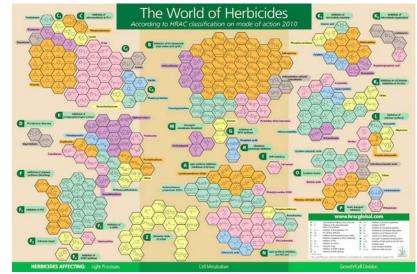
Auxin	HPPD	Communications	Issues Engagement	MOA Classification	РРО
Terry Wright	Roland Beffa	Julia Fellmann	Harry Strek	Rex Liebl	John Pawlack

Key objectives for Working Groups:

- Consolidate and communicate information for specific MOAs
- Monitor research
- Support intellectual dialogue
- Customize BMPs for a given MOA
- Address specific resistance topics (e.g. Monitoring)

Global HRAC Initiatives and Activities

- Disseminate information on resistant weeds:
 - The International Survey of Herbicide Resistant Weeds
 - HRAC Website
 - Seminars and Symposia
- Build recommendations:
 - Working groups
 - Testing protocols
- Mode of Action Classification:
 - Poster
 - Online tool
 - Coordination with other entities



HERBICIDE

ACTION COMMITTEE

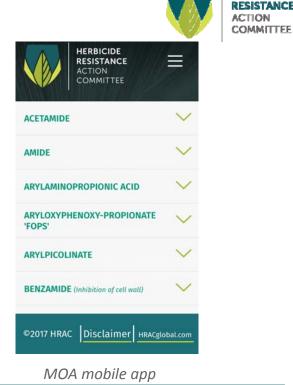
RESISTANCE

www.weedscience.org

www.hracglobal.com

Regional/Country HRAC Objectives and Actions

- Education materials, seminars, symposia
- Research collaborations
- Collection of information on resistant weeds
- Development of Best Management Practices



New Resistance cases in Europe

Country	Weed species	First Year	Active ingredient	Site of Action	Crop
Germany	Bromus sterilis	2017	propoxycarbazone	ALS (B/2)	wheat
Greece	Lolium rigidum	2017	glufosinate	Glutamine synthase inhibitor (H/10)	grapes, olives, orchard
Hungary	Sorghum halepense	2017	Foramsulfuron / nicosulfuron	ALS (B/2)	Corn
Serbia	Sorghum halepense	2017	Fenoxaprop, fluazifop, haloxyfop,	ACCase (A/1)	Soybean
Ukraine	Echinochloa cruss-galli	2017	Imazamox, penoxulam	ALS (B/2)	Rice

2018 Activities and Accomplishments

- Continued engagement with local/regional HRACs
- MOA Classification Working Group completes updates and revisions
- Herbicide MOA app
- PPO Working Group initiated
- Auxin Working Group sponsored review paper
- Review of resistance testing methods in progress
- Survey of HRAC stakeholders completed

HERBICIDE

Review	O SCI		
Received: 23 August 2017	Revised: 5 December 2017	Accepted article published: 13 December 2017	Published online in Wiley Online Library:

(wileyonlinelibrary.com) DOI 10.1002/ps.4823

Weed resistance to synthetic auxin herbicides

Roberto Busi,^a Danica E Goggin,^a Ian M Heap,^b^o Michael J Horak,^c Mithila Jugulam,^d^o Robert A Masters,^{e*}^o Richard M Napier,^f Dilpreet S Riar,^e Norbert M Satchivi,^e^o Joel Torra,^g Phillip Westra^h and Terry R Wright^e

Auxin Resistance Review

HERBICIDE RESISTANCE ACTION COMMITTEE

Industry Perspective of How to Meet the Herbicide Resistance Challenge

Mark A. Peterson, Global HRAC Chair

Herbicide Resistant Weeds Globally

Number of herbicide-resistant species by country

Challenges of Herbicide Resistance

Undermines sustainability Hurts our customers Limits return on investment

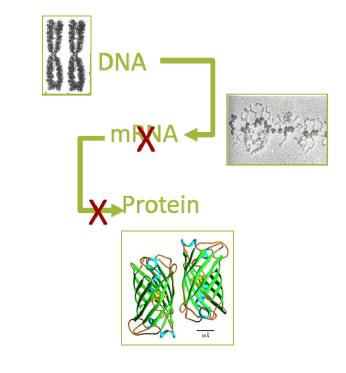
Challenges to Resistance Management

Technical Economic Societal HERBICIDE RESISTANCE ACTION COMMITTEE

How Does Industry Meet These Challenges?

Technical

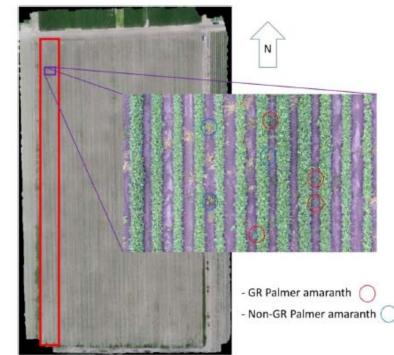
- Develop new technologies (small and large companies)
- Evaluate integrated programs
- Study resistant weeds to understand mechanisms


Economic and Societal

- Education
- Stewardship programs
- Incentives

How Does Industry Meet These Challenges? Develop new technologies

Biotechnology


- Gene insertion (adding new DNA)
- Gene editing (manipulating existing DNA)
- Manipulation of transcription (e.g. RNAi)
- These technologies offer significant promise
- Societal and political acceptance issues are limiting the potential
- Uncertainty of market access can cause companies to reconsider investments

Robotic weeding

- Possibly starting to come of age
- John Deere recently acquired Blue River Technology
- Most devices are currently focused on plant-selective spraying (www.seeandspray.com)
- Could non-chemical means be incorporated in the future?

Huang, et al. Weed Tech. 2017

Precision Weed Management

- UAV-mounted sensor technology
- Faster detection of resistant weeds
- Potential to incorporate spot-control devices

Other Alternative Management Tools

PNAS

- How can technology change crop competitiveness?
- Which companies can bring these technologies forward?

Selective fertilization with phosphite allows unhindered growth of cotton plants expressing the *ptxD* gene while suppressing weeds

Devendra Pandeya^{a,1}, Damar L. López-Arredondo^{b,1}, Madhusudhana R. Janga^a, LeAnne M. Campbell^a, Priscila Estrella-Hernández^b, Muthukumar V. Bagavathiannan^c, Luis Herrera-Estrella^{d,2}, and Keerti S. Rathore^{a,c,2}

^aInstitute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843-2123; ^bStelaGenomics México, 36821 Irapuato, Guanajuato, México; ^cDepartment of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474; and ^dLaboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36624 Irapuato, Guanajuato, México

Summary

- Weeds are evolving
- Our thinking must evolve as well
- The Industry needs to work cooperatively and inclusively in some areas
- Public and Private weed scientists as well as farmers need to be open to new ideas and new methods of weed control

Thank You!

Contact us at hracglobal.com